

The goal is to show

- · what is critical to protect the Lake
- consequences of the effluent N:P ratio
- that nitrate removal not helpful to the Lake
- that nitrate removal best left to incidental processes at the plant
 - Better for: the Lake; the rate-payers; the carbon footprint; \$ for what matters most
- that large portion of the \$350M expense may fuel the dangerous blue-green algae

Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of 37-year whole-ecosystem experiment. PNAS 105: 11254, 2008

DW Schindler, RE Hecky, DL Findlay, MP Stainton, BR Parker, MJ Paterson, Constant P KG Beaty, M Lyng, SEM Kasian

* Decreasing N

* Increased BG fraction & BG blooms

Experimental Lakes Area, Ontario-Lake 227

CEC recommended

- Remove P to 1 mg/L
- Remove ammonia to less than toxic loads
- Remove total nitrogen TN to 15 mg/L
- Keep effluent N/P mass ratio at 15/1
- Use BNR **and** do not use chemical phosphorus removal. Recover phosphorus

What this eutrophic Lake needs to control excessive blooms

- Phosphorus as low as humanly possible
- Nitrogen presence to keep the "good" algae competitive against the "bad" BG algae
- Some nitrate presence to mitigate the phosphorus recycle from sediments

What CEC implies

- Deep removal of total nitrogen
- N : P = 15: 1 means 0.3 mg P/L → 5 mg N/L
- 5 mg N/L → Limit of Treatment Technology LOT
 - methanol
 - increased carbon footprint
 - increased emissions of nitrous oxide N₂O
 - no benefit to the river; potential harm to the Lake
- Plants must be oversized to meet requirements during high flows and cold temperatures of Spring melt

Nitrogen is not a problem in the Lake – in fact it is needed. But what are the Red River needs?

- · Ammonia may affect the river
 - No impact of ammonia on oxygen at all found
 - Potential toxicity in the river mitigated by permit
- Nitrates in the river should be well below the drinking water standards (10 mg N/L)

N. End	d capital and fu	ıture	cos	ts
Option and Description	Process Schematic	Effluent Performance Targets (mg/L)	Capital Cost (Million)	Future Cos 20 yrs @ 6 ° (Millions)
Centrate N and P Removal No Change to Main Plant		TP ~ 3.0 NH ₃ ~ 17 TN ~ 25	\$ 30	\$ 85
Bioaugmentation, Increase Main Plant SRT, Split stream Partial Nitrification, Chem. P		TP ≤ 1.0 NH ₃ ≤ 3.0 TN ~ 25	\$ 130	\$ 350
BNR Main Plant		TP ≤ 1.0 NH ₃ ≤ 3.0 TN ≤ 15	\$ 430	\$ 1100
LoT – BNR Main Plant		TP ≤ 0.3 NH ₃ ≤ 1.0 TN ≤ 5.0	\$ 730	\$ 1500
N. Szoke City of Winn	nipeg			è Parente

The CEC proposed TN permit and N:P requirement

- Are not just incremental DN cost increase
- Prevent flexible/sustainable approach to design that would allow for:
 - Multi-stage add-on processes
 - Minimal disruption of the current infrastructure, which mostly works well
 - Lesser tank volumes for critical cold/wet period of Spring thaw

Reserved

Two examples of other, thus defeated, lower cost options preserving the existing infrastructure and providing protection of the Lake and the River

- Phoredox → MBBR
- HPOAS with PhoStrip → N-BAF or DN/N 1-stage BAF

Name of Street

So what should be done to protect the River, the Lake and the Public Purse?

- Effluent P as low as possible e.g. 0.1-0.3 mg/L
- Combine P removal with P recovery upstream of the sludge train. Mind the economics!
- Allow the 15:1 = N:P ratio to increase.
- Remove ammonia from centrate, bioaugmentation and process upgrade
- Leave nitrates to "incidental" removal within the plant processes (e.g. O₂ or alkalinity recovery)

Parameter St.

P rules. Remove till it hurts and recover P Meet load permit for ammonia with the centrate facility and process upgrades TN effluent limits detrimental to the Lake, rate payer and the main goal Drop N:P ratio; it pushes us into the Limits of Technology for N removal Put money saved where it matters most to the Lake: radical watershed P control

Receiver impact of pollutants

- 1. Oxygen depletion from C, N √
- 2. Pathogens √
- 3. Toxicity (of ammonia) √
- Eutrophication P √
- Chronic impact of endocrine disrupting and bio-accumulating compounds ?

.

Lake Winnipeg

- 6.6 M people
- 210 M population equiv.= animal waste
- 1 M km² fertilized agricultural watershed

*	t de		
1	1	76	
K		1 40	
級	T.	I I	À
1090	1235	100	See T

Sources	Total N	itrogen	Total Phosphorus	
Non-Point	71,100	74.1%	6,500	81.3%
Point	6,000	6.3%	1,000	12.5%
Other	18,800	19.6%	500	6.3%
Total	95,900	100%	8,000	100%
North End Plant	2,300	2.4%	310	3.9%
				- A

N₂O gas emissions are by aquatic species and/or by treatment processes

- N₂O is formed during nitrification and during denitrification
- Denitrification to low TN employs petrochemicals with large carbon footprint
- Treatment plant nitrification/denitrification has not been shown to decrease N₂O emissions, when compared to N₂O emissions by aquatic species

Nitrogen: $N_{org} \cdot NH_4 \cdot NH_3 \cdot NO_3 \cdot NO_2$. TN = sum of all

- $N_{org} \rightarrow NH_4^+$ Ammonia
- Ammonia NH₃ may be toxic in summer
- NH₄⁺ uses up oxygen to form nitrates
 NH₄ + O₂ → NO₃
- Nitrates must be below 10 mg N/L in drinking water. Persist in groundwater
- Nitrites may be toxic

7